

Solve $(D^3 + 2D^2 + D) y = e^{2x} + x + Sin 2x$

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech I Year I Semester Supplementary Examinations November 2020 Engineering Mathematics-I (Common to all)

Time: 3 hours

2

Max. Marks: 60

12M

(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I

1	a Solve $x \frac{dy}{dx} + y = \log x$	6M
---	---	----

b Solve
$$\frac{dy}{dx} + y \tan x = y^2 Sec x$$
 6M

OR

UNIT-II

3 a If
$$u = \frac{yz}{x}$$
; $v = \frac{zx}{y}$; $w = \frac{xy}{z}$, show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 4$ 6M

b Expand
$$\log(1 + ex)$$
 is ascending powers of x 6M

OR

4 **a** Find the radius of curvature at the origin for the curve $y^4 + x^3 + a(x^2 + y^2) - a^2 y = 0$ **b** Find the minimum value of $x^2 + y^2 + z^2$ given x + y + z = 3a6M

UNIT-III

5 **a** Find
$$\iint (x^2 + y^2) dx dy$$
 over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 6M
b Evaluate the following integral by transforming into polar coordinates

$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} \, dx \, dy$$
 6M

OR

6 a Evaluate
$$\int_{1}^{e} \int_{1}^{\log y} \int_{1}^{e^{x}} \log z \, dz \, dx \, dy$$
 6M

b Show that by the double integration, the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $16a^2/3$

7 **a** Find the Laplace transform of
$$3\cos 3t \cos 4t$$
 6M
b Find the Laplace transform of $e^{-3t}(2\cos 5t - 3\sin 5t)$ 6M

8 a Find the Laplace transform of
$$f(t) = t \sin 3t \cdot \cos 2t$$
 6M

b Find $L\{F(t)\}$, where F(t) is a periodic function of period 2a and it is given by $F(t) = \begin{cases} k & o < t < a \\ -k & a < t < 2a \end{cases}$ 6M

R16

UNIT-V

9 a Find the Inverse Laplace Transform of $\frac{5s-2}{s^2(s+2)(s-1)}$ 6M

b Find
$$L^{-1}\left\{\frac{1}{2}\log\left(\frac{s^2+b^2}{s^2+a^2}\right)\right\}$$
 6M

OR

10 Using Laplace Transform method,
solve
$$(D^2 + n^2)x = a\sin(nt + \alpha)$$
, $x = Dx = 0$ at $t = 0$ 12M

*** END ***